Topological equivariant coarse K-homology

نویسندگان

چکیده

For a $C^{*}$-category with strict $G$-action we construct examples of equivariant coarse homology theories. To this end first introduce versions Roe categories objects in $C^{*}$-categories which are controlled over bornological spaces, and then apply homological functor. These theories employed to verify that certain functors on the orbit category CP-functors. This fact has consequences for injectivity assembly maps.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant K-homology for Some Coxeter Groups

We obtain the equivariant K-homology of the classifying space EW for W a right-angled or, more generally, an even Coxeter group. The key result is a formula for the relative Bredon homology of EW in terms of Coxeter cells. Our calculations amount to the K-theory of the reduced C∗-algebra of W , via the Baum-Connes assembly map.

متن کامل

Equivariant K-homology for Hyperbolic Reflection Groups

We compute the equivariant K-homology of the classifying space for proper actions, for cocompact 3-dimensional hyperbolic reflection groups. This coincides with the topological K-theory of the reduced C∗-algebra associated to the group, via the Baum-Connes conjecture. We show that, for any such reflection group, the associated K-theory groups are torsion-free. This means that we can complete pr...

متن کامل

Topological K-theory of equivariant singularity categories

We study the topological K-theory spectrum of the dg singularity category associated to a weighted projective complete intersection. We calculate the topological K-theory of the dg singularity category of a weighted projective hypersurface in terms of its Milnor fiber and monodromy operator, and, as an application, we obtain a lift of the Atiyah-Bott-Shapiro construction to the level of spectra.

متن کامل

Cyclic homology and equivariant homology

The purpose of this paper is to explore the relationship between the cyclic homology and cohomology theories of Connes [9-11], see also Loday and Quillen [20], and "IF equivariant homology and cohomology theories. Here II" is the circle group. The most general results involve the definitions of the cyclic homology of cyclic chain complexes and the notions of cyclic and cocyclic spaces so precis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of K-theory

سال: 2023

ISSN: ['2379-1691', '2379-1683']

DOI: https://doi.org/10.2140/akt.2023.8.141